发布: 更新时间:2024-07-07 08:51:35
在分布式环境中,生成全局唯一ID是一项重要的任务。全局唯一ID需要满足多项要求,包括唯一性、高可用性、高性能、递增性和安全性。在这种情况下,Redis可以满足这些要求。
Redis本身以其出色的性能而闻名,完全符合高性能的要求。其次,使用Redis的incr命令可以保证递增性。配合相应的分布式ID生成算法,可以实现唯一性和安全性。Redis可以通过哨兵、主从等集群方案来保证可用性。因此,Redis是一个不错的选择。
下面我们将编写一个简单的示例,来让大家感受一下。在实际工作中,可以根据需要进行调整:
@Component
public class IDUtil{
//开始时间戳(单位:秒) 2000-01-01 00:00:00
private static final long START_TIMESTAMP = 946656000L;
//Spring Data Redis 提供的 Redis 操作模板
@Resource
private StringRedisTemplate stringRedisTemplate;
/**
* 获取 ID 格式:时间戳+序列号
* @param keyPrefix Redis 序列号前缀
* @return 生成的 ID
*/
public long getNextId(String keyPrefix){
//获取当前时间戳
LocalDateTime now = LocalDateTime.now();
long nowTimestamp = now.toEpochSecond(ZoneOffset.UTC);
//获取 ID 时间戳
long timestamp = nowSecond - START_TIMESTAMP;
//获取当前日期
String date = now.format(DateTimeFormatter.ofPattern("yyyyMMdd"));
//生成 key
String key = "incr:" + keyPrefix + ":" + date;
//获取序列号
long count = stringRedisTemplate.opsForValue().increment(key);
//生成 ID 并返回
return timestamp << 32 | count;
}
}
在分布式环境中,分布式锁是必不可少的。在分布式环境下,每台机器都会有自己的锁监视器,因此需要分布式锁来保证整个集群的线程的安全。分布式锁需要满足多项要求,包括多进程可见、互斥性、高可用、高性能和安全性。其中,Redis的效果最理想,因此下面将用Redis来实现一个简单的分布式锁。
通过对比我们发现,其中 Redis 的效果最理想,所以下面就用 Redis 来实现一个简单的分布式锁。
public class DistributedLockUtil {
//分布式锁前缀
private static final String KEY_PREFIX = "distributed:lock:";
//业务名
private String business;
//分布式锁的值
private String value;
//Spring Data Redis 提供的 Redis 操作模板
private StringRedisTemplate stringRedisTemplate;
//私有化无参构造
private DistributedLockUtil(){}
//有参构造
public DistributedLockUtil(String business,StringRedisTemplate stringRedisTemplate){
this.business = business;
this.stringRedisTemplate = stringRedisTemplate;
this.value = UUID.randomUUID().toString();
}
/**
* 尝试获取锁
* @param timeout 超时时间(单位:秒)
* @return 锁是否获取成功
*/
public boolean tryLock(long timeout){
//生成分布式锁的 key
StringBuffer keyBuffer = new StringBuffer(KEY_PREFIX);
keyBuffer.append(business);
Boolean success = stringRedisTemplate.opsForValue().setIsAbsent(keyBuffer.toString(),value,timeout, TimeUnit.SECONDS);
//返回结果 注意:为了防止自动拆箱时出现空指针,所以这里用了 equals 判断
return Boolean.TRUE.equals(success);
}
/**
* 释放锁(不安全版)
*/
public void unLock(){
//生成分布式锁的 key
StringBuffer keyBuffer = new StringBuffer(KEY_PREFIX);
keyBuffer.append(business);
//获取分布式锁的值
String redisValue = stringRedisTemplate.opsForValue().get(keyBuffer.toString());
//判断值是否一致,防止误删
if (value.equals(redisValue)) {
//当代码执行到这里时,如果 JVM 恰巧执行了垃圾回收(虽然几率极低),就会导致所有线程阻塞等待,因此这里仍然会有线程安全的问题
stringRedisTemplate.delete(keyBuffer.toString());
}
}
/**
* 通过脚本释放锁(彻底解决线程安全问题)
*/
public void unLockWithScript(){
//加载 lua 脚本,实际工作中我们可以将脚本设置为常量,并在静态代码块中初始化(脚本内容在下文)
DefaultRedisScript<Long> script = new DefaultRedisScript<>();
script.setLocation(new ClassPathResource("unlock.lua"));
script.setResultType(Long.class);
//生成分布式锁的 key
StringBuffer keyBuffer = new StringBuffer(KEY_PREFIX);
keyBuffer.append(business);
//调用 lua 脚本释放锁
stringRedisTemplate.execute(script,
Collections.singletonList(keyBuffer.toString()),
value);
}
}
lua 脚本内容如下:
-- 判断值是否一致,防止误删
if(redis.call('get',KEYS[1]) == VRGV[1]) then
-- 判断通过,释放锁
return redis.call('del',KEYS[1])
end
-- 判断不通过,返回 0
return 0
虽然通过 lua 脚本解决了线程不安全的问题,但是仍然存在以下问题:
要解决以上问题也非常简单,只需要利用 Redis 的 hash 结构记录线程标识和重入次数就可以解决不可重入的问题。利用信号量和 PubSub 功能实现等待、唤醒,获取锁失败的重试机制即可解决不可重试的问题。而超时释放的问题则可以通过获取锁时为锁添加一个定时任务(俗称看门狗),定期刷新锁的超时时间即可。至于主从一致性问题,我们只需要利用多个
独立
的 Redis 节点(非主从),
必须
在所有节点都获取重入锁,才算获取锁成功。
有的人可能说了,虽然说起来简单,但真正实现起来也不是很容易呀。对于这种问题,大家不用担心,俗话说得好想要看的更远,需要站在巨人的肩膀上。对于上述的需求,早就有了成熟的开源方案Redisson,我们直接拿来用就可以了,无需重复造轮子,具体使用方法可以查看官方文档。
轻量化消息队列是另一个重要的应用场景。尽管市面上有很多优秀的消息中间件如RocketMQ、Kafka等,但对于应用场景较为简单,只需要简单的消息传递,比如任务调度、简单的通知系统等,不需要复杂的消息路由、事务支持的业务来说,用那些专门的消息中间件成本就显得过高。因此我们就可以使用Redis来做消息队列。
Redis提供了三种不同的方式来实现消息队列:
下面我就采用Redis的Stream实现一个简单的案例来让大家感受一下,实际工作中大家可以根据需要进行调整:
public class RedisQueueUtil{
//Spring Data Redis 提供的 Redis 操作模板
private StringRedisTemplate stringRedisTemplate;
/**
* 获取消息队列中的数据,执行该方法前,一定要确保消费者组已经创建
* @param queueName 队列名
* @param groupName 消费者组名
* @param consumerName 消费者名
* @param type 返回值类型
* @return 消息队列中的数据
*/
public <T> T getQueueData(String queueName, String groupName, String consumerName, Class<T> type){
while (true){
try {
//获取消息队列中的信息
List<MapRecord<String,Object,Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from(groupName,consumerName),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create(queueName, ReadOffset.lastConsumed())
);
//判断消息是否获取成功
if (list == null || list.isEmpty()){
//如果获取失败,说明没有消息,继续下一次循环
continue;
}
//如果获取成功,则解析消息中的数据
MapRecord<String,Object,Object> record = list.get(0);
Map<Object,Object> values = record.getValue();
String jsonString = JSON.toJSONString(values);
T result = JSON.parseObject(jsonString, type);
// ACK
stringRedisTemplate.opsForStream().acknowledge(queueName,groupName,record.getId());
//返回结果
return result;
}catch (Exception e){
while (true){
try {
//获取 pending-list 队列中的信息
List<MapRecord<String,Object,Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from(groupName,consumerName),
StreamReadOptions.empty().count(1)),
StreamOffset.create(queueName,ReadOffset.from("0")
);
//判断消息是否获取成功
if (list == null || list.isEmpty()){
//如果获取失败,说明 pending-list 没有异常消息,结束循环
break;
}
//如果获取成功,则解析消息中的数据
MapRecord<String,Object,Object> record = list.get(0);
Map<Object,Object> values = record.getValue();
String jsonString = JSON.toJSONString(values);
T result = JSON.parseObject(jsonString, type);
// ACK
stringRedisTemplate.opsForStream().acknowledge(queueName,groupName,record.getId());
//返回结果
return result;
}catch (Exception ex){
log.error("处理 pending-list 订单异常",ex);
try {
Thread.sleep(50);
}catch (InterruptedException err){
err.printStackTrace();
}
}
}
}
}
}
/**
* 向消息队列中发送数据
* @param queueName 消息队列名
* @param map 要发送数据的集合
*/
public void sendQueueData(String queueName, Map<String,Object> map){
StringBuilder builder = new StringBuilder("redis.call('xadd','");
builder.append(queueName).append("','*','");
Set<String> keys = map.keySet();
for(String key:keys){
builder.append(key).append("','").append(map.get(key)).append("','");
}
String script = builder.substring(0, builder.length() - 2);
script += ")";
stringRedisTemplate.execute(new DefaultRedisScript<Long>(script,Long.class),Collections.emptyList());
}
}